Abstract
Slow access time, high power dissipation, and a rapidly approaching scaling limit constitute roadblocks for existing nonvolatile flash memory technologies. A new family of storage devices is needed. Filamentary resistive RAM (ReRAM) offers scalability, potentially sub-10 nm, nanosecond write times and a low power profile. Importantly, applications beyond binary memories are also possible. Here, we look at aspects of the electrical response to nanosecond stimuli of intrinsic resistance switching TiN/SiOx/TiN ReRAM devices. Simple sequences of identical pulses switch devices between two or more states, leading to the possibility of simplified programmers. Impedance mismatch between the device under test and the measurement system allows us to track the electroforming process and confirm it occurs on the nanosecond timescale. Furthermore, we report behavior reminiscent of neuronal synapses (potentiation, depression, and short-term memory). Our devices therefore show great potential for integration into novel hardware neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.