Abstract

This paper demonstrates that false data injection (FDI) attacks are extremely limited in their ability to cause physical consequences on N-1 reliable power systems operating with real-time contingency analysis (RTCA) and security constrained economic dispatch (SCED). Prior work has shown that FDI attacks can be designed via an attacker-defender bi-level linear program (ADBLP) to cause physical overflows after re-dispatch using DCOPF. In this paper, it is shown that attacks designed using DCOPF fail to cause overflows on N-1 reliable systems because the system response modeled is inaccurate. An ADBLP that accurately models the system response is proposed to find the worst-case physical consequences, thereby modeling a strong attacker with system level knowledge. Simulation results on the synthetic Texas system with 2000 buses show that even with the new enhanced attacks, for systems operated conservatively due to N-1 constraints, the designed attacks only lead to post-contingency overflows. Moreover, the attacker must control a large portion of measurements and physically create a contingency in the system to cause consequences. Therefore, it is conceivable but requires an extremely sophisticated attacker to cause physical consequences on N-1 reliable power systems operated with RTCA and SCED.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.