Abstract

Objectives: Natural hydroxyapatite (HAP) has been utilized as a drug carrier owing to its excellent bioactivity and biocompatibility. This study is aimed at formulating mupirocin/hydroxyapatite composite suspended in hydrogel. The appropriate quantity of the penetration enhancer (Transcutol-P®) was also investigated. Materials and Methods: The HAP was isolated from bovine bone by hydrothermal treatment, calcined at 1000oC and held for 2 hours in an electric furnace to remove the organic contents. The bones were milled, sifted using 150 µm mesh sieve and characterized. Olive oil, which contains oleic acid, was utilized as a natural capping agent to prevent agglomeration of the particles in the formulation. The quantity of Transcutol-P® was varied with mupirocin used as the active pharmaceutical ingredient for the management of acute wound in Wistar rats. In this animal study, the wound closure rate was evaluated. Results: The formulation with the 0.6%v/v, of Transcutol-P® gave the best wound closure rate of 30.05 mm2/day. The in-vitro study showed that the formulation containing 0.6%v/v Transcutol-P® released 63.9% of the drug after 75 minutes while 42.4% was released at the same time interval when the concentration of the penetration enhancer was increased to 1.2%v/v. The mupirocin-encapsulated HAP hydrogel composite showed high resistance against staphylococcus saprophyticus with inhibition zone of 37.3 mm. Conclusion: The mupirocin encapsulated in HAP allows for sustained release of the antibiotic and thus serves as a veritable drug carrier suitable for wound healing applications. Transcutol-P® (0.6%v/v) is effective in facilitating drug release, which is reflected in the increased wound closure rate in Wistar rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call