Abstract
Understanding the mechanisms of responses to high temperatures in Arabidopsis will provide insights into how plants may mitigate heat stress under global climate change. And exploring the interconnections of different modification levels in heat stress response could help us to understand the molecular mechanism of heat stress response in Arabidopsis more comprehensively and precisely. In this paper, we combined multiomics analyses to explore the common heat stress-responsive genes and specific heat-responsive metabolic pathways in Arabidopsis leaf, seedling, and seed tissues. We found that genes such as AT1G54050 play a role in promoting proper protein folding in response to HS (Heat stress). In addition, it was revealed that the binding profile of A1B is altered under elevated temperature conditions. Finally, we also show that two microRNAs, ath-mir156h and ath-mir166b-5p, may be core regulatory molecules in HS. Also elucidated that under HS, plants can regulate specific regulatory mechanisms, such as oxygen levels, by altering the degree of CHH methylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.