Abstract
The grey mould fungus Botrytis cinerea is a dangerous plant pathogen responsible for substantial agricultural losses worldwide. The pathogenic mechanisms still have many unclear aspects, and numerous new pathogenic genes remain to be identified. Here, we show that the sterol regulatory element-binding protein Sre1 plays an important role in the development and pathogenicity of B. cinerea. We identified a homologue of gene SRE1 in the B. cinerea genome and utilized a reverse genetics approach to create the knockout mutant Δsre1. Our results demonstrate that SRE1 is essential for conidiation, as Δsre1 produced only 3% of the conidia compared to the wild-type strain. Conversely, Δsre1 exhibited increased sclerotium production, indicating a negative regulatory role of SRE1 in sclerotium formation. Furthermore, ergosterol biosynthesis was significantly reduced in the Δsre1 mutant, correlating with increased sensitivity to low-oxygen conditions. Pathogenicity assays revealed that Δsre1 had significantly reduced virulence, although it maintained normal infection cushion formation and penetration capabilities. Additionally, SRE1 was found to be crucial for hypoxia adaptation, as Δsre1 showed abnormal germination and reduced growth under low-oxygen conditions. These findings suggest that SRE1 mediates the development and pathogenicity of B. cinerea by regulating lipid homeostasis and facilitating adaptation to host tissue environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have