Abstract

The method of direct current potential drop (DCPD) can be utilized as an effective and convenient approach for in situ damage detection, and as a nondestructive evaluation technique. We present the results from use of a multiprobe DCPD technique for in situ damage detection in loading of a SiC/SiC composite. It is shown that in three different modes of loading (monotonic, fatigue, and cyclic load–unload), the sensing capabilities of DCPD technique compare well to the techniques of modal acoustic emission (AE) and digital image correlation (DIC). It was also found that DCPD technique provides a far earlier warning of failure under fatigue loading than the other two methods. In addition, we show that strategically placed multiple voltage leads on the specimen surface provide a promising way of qualitatively determining the crack initiation site. Therefore, the use of multiple lead DCPD method, together with other techniques, provides a viable option for sensing damage in ceramic matrix composites (CMCs) with complex geometries, and for applications at higher temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call