Abstract

A gating circuit for a photonic quantum simulator is introduced. The gating circuit uses a large excess bias voltage of up to 9.9 V and an integrated single-photon avalanche diode (SPAD). Nine channels are monolithically implemented in an application-specific integrated circuit (ASIC) including nine SPADs using 0.18 µm high-voltage CMOS technology. The gating circuit achieves rise and fall times of 480 ps and 280 ps, respectively, and a minimum full-width-at-half-maximum pulse width of 1.26 ns. Thanks to a fast and sensitive comparator, a detection threshold for avalanche events of less than 100 mV is possible. The power consumption of all nine channels is about 250 mW in total. This gating chip is used to characterize the integrated SPADs. A photon detection probability of around 50% at 9.9 V excess bias and for a wavelength of 635 nm is found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.