Abstract
Summary To date, most of the research concerning the separation process has had a deterministic approach because of its orientation to steady-state-flow regimes. However, this assumption is far from true when many artificial intermittent gas lifted (IGL) wells are connected to the same separator. IGL wells have flow/no-flow periodic conditions associated with long accumulation stages and short production stages lasting approximately 20 minutes and 1 minute, respectively. A stochastic algorithm was developed to simulate the separation process and the proper periodicity of each IGL well, along with the unpredictable delay or synchronization between those wells. The simulation couples the dynamic mass-balance equations in the separator and the Monte Carlo method for predicting the gas and liquid rates associated with the superposition of the IGL wells. The input parameters for this simulation include daily gas/oil production and cycle time of each well, the oil properties, separator pressure and temperature, and the control scheme. The simulator output matched with less than 10% of the field data. The results obtained with the approach suggested in this work could be used for new criteria in design, simulation, and evaluation of separation facilities under fluctuating conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have