Abstract

Summary Foam stability is an important parameter for foam fracturing. Bench-top testing is useful for screening but does not address the necessary conditions of temperature, pressure, pH [particularly with carbon dioxide (CO2) systems], and dynamic-flow conditions that can have unexpected influence on the foam's performance. A laboratory apparatus has been constructed for measuring the rheology of circulating-foam fluids to 400°F and 3,000 psi. The apparatus is equipped with a circulation pump, view cells, foam generator, mass flowmeter, and piping for loading a foam of the desired quality using either nitrogen (N2) or CO2. The foam rheometer is intended for evaluation of foam stability with time and comparison of various foam formulations for application in foam fracturing. The foam loop was designed to mimic shear rates found in a fracture or reservoir, which are typically 200 s−1 or less. The rheology is measured by monitoring the pressure drop across a 20-ft length of ¼-in. tubing maintained at temperature in an oven. Flow rate is continuously adjusted, to ensure a constant shear rate in the tubing, by the software using continuous mass-flowmeter input. Results relating to CO2 and N2 foams are discussed with emphasis on foam persistence, bubble size and population, and the rheological behavior with time. Temperature, pressure, and additives affect both foam texture and foam stability. The adoption of a standard technique patterned after this work for evaluating foam rheology could impact the use and development of foam fluids in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call