Abstract
Monte Carlo ion-implant models for germanium and indium implantation into single-crystal silicon have been developed and are described in this paper. The models have been incorporated in the UT-MARLOWE ion implantation simulator, and have been developed primarily for use on engineering workstations. These models provide the required as-implanted impurity profiles as well as damage profiles, which can be used as inputs for transient enhanced diffusion simulation and subsequent multiple implant simulation. A comparison of simulation results with experimental data shows that the models predict both the impurity profiles and the damage profiles very successfully for a wide range of implant conditions. The damage profiles from germanium implant simulations have been used for subsequent multiple implant simulations and excellent agreement with experimental results has been achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.