Abstract

The reduction of computing time without loss of accuracy is a very important task for three-dimensional process simulation. We present new approaches for fast and stable simulation of etching and deposition processes by introducing non spherical structuring element algorithms to our morphological operation based cellular topography simulator. We demonstrate improvements and accelerations for a wide variety of etching and deposition models such as isotropic deposition, uni-directional etching, lithography development simulation, sputter deposition and reactive ion etching. we also draw comparisons with the originally implemented algorithm and other approaches such as the level set method. furthermore we show a fast, physically based, and accurate three-dimensional simulation of tin sputter deposition and, by means of a two metal layer interconnect structure, we demonstrate an efficient generation of three-dimensional geometries directly including layout information and photolithography simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.