Abstract

The article is devoted to the topic of automation of control of the selection process or determination of the technological and structural characteristics of safety valves installed on the technological equipment of chemical plants to ensure their industrial safety. The purpose of the work was to develop models and algorithms that allow automating the determination of the above characteristics. The tasks necessary to achieve this goal have been formulated. The methods of systems analysis and the theory of artificial intelligence, as well as the methodology of structural analysis and design, functional modeling, modular and object-oriented programming, are used. The analysis of scientific and technical literature on the research topic is carried out. As a result of the analysis, no models and algorithms were identified that would automate the determination of the above characteristics. Using a systematic approach, the analysis of the process of defining the characteristics of safety valves as an object of computerization is carried out. As a result of the analysis, it was found that this process contains heuristic knowledge and can be formalized using the methods of the theory of artificial intelligence. Using the methodology of structural analysis and design, functional modeling, as well as the basic principles of system analysis, a logical-informational model for determining the technological and structural characteristics of safety valves as an organizational and technological process has been developed. Using the methods of the theory of artificial intelligence, production models have been developed for representing knowledge about safety valves; gases used in the chemical industry; design factors required to determine the desired characteristics of the safety valves. Heuristic-computational algorithms have been developed for determining the technological and design characteristics of safety valves, including the nominal pressure of the valve, the highest overpressure downstream of the valve, possible values of the nominal pressure of the outlet pipe, and the effective area of the valve "seat". The developed models and algorithms are supposed to be applied to create a problem-oriented system that will ensure the determination of the technological and structural characteristics of safety valves in an automated mode, which will significantly reduce the time spent on the procedure for selecting a brand of safety valve that meets industrial safety requirements and will also improve the quality of this procedure. ... The practical application of the created problem-oriented system will increase the economic efficiency and industrial safety of the operation of chemical plants in general. The developed models and algorithms can also be used as examples in solving the problems of automation of determining the characteristics of safety valves in other industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call