Abstract

The global energy structure is on a low-carbon transition path featuring more natural gas consumption, and global natural gas demand has been increasing fast. Planning and operation of a natural gas supply system at a transient stage with multiple supply sources, end-consumers, and large infrastructure with multiple sub-systems are challenging tasks. Spatial and seasonal mismatch of natural gas supply and demand makes the natural gas distribution and infrastructure construction planning problem even more complex. Without proper planning, insufficient construction could lead to a shortage of natural gas supply, whilst excessive construction could lead to a higher cost. Quantitative analysis technologies are needed to facilitate decision-making during the transient stage of a natural gas system. In this work, we propose a monthly-scale multi-period and multi-regional modelling and optimization framework for planning and operation of a natural gas supply system at a transient stage, with a case study of the natural gas supply system in China. The optimal planning and operation strategy of the natural gas supply system in China by 2050 is obtained by minimizing the lifespan overall cost. Gaps between actual planning and the optimal planning are pointed out. Finally, policy suggestions are summarized, including establishing market-oriented pricing mechanisms, managing infrastructure centrally, promoting coordination amongst provinces when formulating projections, accelerating current infrastructure construction, and predicting natural gas demand and prices reasonably.

Highlights

  • In recent years, global natural gas consumption has grown rapidly, and the share of natural gas in primary energy consumption has reached a historical high level of 23.4%

  • Optimal natural gas distribution strategy In the historical optimization scenario, the optimal strategy of natural gas distribution can be summarized by comparing results with the historical simulation scenario

  • From April to October, natural gas produced in West China and imported from Central Asia need to meet the demand in North and East China, and liquid natural gas (LNG) need to be imported only in South China

Read more

Summary

Introduction

Global natural gas consumption has grown rapidly, and the share of natural gas in primary energy consumption has reached a historical high level of 23.4%. In 2017, global natural gas consumption increased by 3 %, higher than the overall energy consumption growth rate of 2.2%. The increase is mainly from China, the Middle East and Europe, accounting for 15.1, 13.6, and 12.7%, respectively [1]. Natural gas supply highly depends on specialized and high-cost infrastructure, including pipeline networks, liquid natural gas (LNG) ports, and storage facilities. Spatial mismatch between natural gas resources and natural gas demand requires a large amount of infrastructure. In 2017, international natural gas trade reached

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call