Abstract
In this research, a Bayesian network (BN) approach is proposed to model the car use behavior of drivers by time of day and to analyze its relationship with driver and car characteristics. The proposed BN model can be categorized as a tree-augmented naive (TAN) Bayesian network. A latent class variable is included in this model to describe the unobserved heterogeneity of drivers. Both the structure and the parameters are learned from the dataset, which is extracted from GPS data collected in Toyota City, Japan. Based on inferences and evidence sensitivity analysis using the estimated TAN model, the effects of each single observed characteristic on car use measures are tested and found to be significant. The features of each category of the latent class are also analyzed. By testing the effect of each car use measure on every other measure, it is found that the correlations between car use measures are significant and should be considered in modeling car use behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part D: Transport and Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.