Abstract

In this paper we consider finding a geometric minimum-sum dipolar spanning tree in R3, and present an algorithm that takes O(n2log2n) time using O(n2) space, thus almost matching the best known results for the planar case. Our solution uses an interesting result related to the complexity of the common intersection of n balls in R3, of possible different radii, that are all tangent to a given point p. The problem has applications in communication networks, when the goal is to minimize the distance between two hubs or servers as well as the distance from any node in the network to the closer of the two hubs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.