Abstract

Deformations affect the structural integrity of wind turbine towers. The health of such structures is thus assessed by monitoring. The majority of sensors used for this purpose are costly and require in situ installations. We investigated whether Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO-SAR) sensors can be used to monitor wind turbine towers. We used an automotive-grade, low-cost, off-the-shelf MIMO-SAR sensor operating in the W-band with an acquisition frequency of 100 Hz to derive Line-Of-Sight (LOS) deformation measurements in ranges up to about 175 m. Time series of displacement measurements for areas at different heights of the tower were analyzed and compared to reference measurements acquired by processing video camera recordings and total station measurements. The results showed movements in the range of up to 1 m at the top of the tower. We were able to detect the deformations also with the W-band MIMO-SAR sensor; for areas with sufficient radar backscattering, the results suggest a sub-mm noise level of the radar measurements and agreement with the reference measurements at the mm- to sub-mm level. We further applied Fourier transformation to detect the dominant vibration frequencies and identified values ranging from 0.17 to 24 Hz. The outcomes confirmed the potential of MIMO-SAR sensors for highly precise, cost-efficient, and time-efficient structural monitoring of wind turbine towers. The sensors are likely also applicable for monitoring other high-rise structures such as skyscrapers or chimneys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call