Abstract
Abstract Laser-based powder bed fusion (LPBF) of metals offers the unique possibility of creating the microstructure voxel-by-voxel. The minimum voxel size in each direction is dependent on material dosing accuracy coupled with laser processing parameters. The rapid solidification conditions during LPBF lead to material heterogeneity coupled with hierarchical and non-equilibrium microstructures. The current paper delves into two different pathways available currently to control microstructure in LPBF, namely: in-situ microstructure control through material distribution to form functionally graded components with complex interfaces; application of post-processing thermo-mechanical treatments to control the microstructure. Unlike traditional manufacturing methods, each voxel in LPBF can be further processed multiple times after the first fusion process. Such in-situ processing presents further opportunity for tailoring the microstructure of each voxel in 3D. A future perspective is thus offered on the opportunities to control and engineer LPBF microstructures in metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.