Abstract

Laser aided additive manufacturing (LAAM) was used to fabricate bulk Fe49.5Mn30Co10Cr10C0.5 interstitial multicomponent alloy using pre-alloyed powder. The room temperature yield strength (σy), ultimate tensile strength (σUTS) and elongation (εUTS) were 645 MPa, 917 MPa and 27.0 % respectively. The as-built sample consisted of equiaxed and dendritic cellular structures formed by elemental segregation. These cellular structures together with oxide particle inclusions were deemed to strengthen the material. The other contributing components include dislocation strengthening, friction stress and grain boundary strengthening. The high εUTS was attributed to dislocation motion and activation of both twinning and transformation-induced plasticity (TWIP and TRIP). Tensile tests performed at −40 °C and −130 °C demonstrated superior tensile strength of 1041 MPa and 1267 MPa respectively. However, almost no twinning was observed in the fractured sample tested at −40 °C and −130 °C. Instead, higher fraction of strain-induced hexagonal close-packed (HCP) ε phase transformation of 21.2 % were observed for fractured sample tested at −40 °C, compared with 6.3 % in fractured room temperature sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.