Abstract

The CoCrFeNiMn high entropy alloy (HEA) bulk alloy was successfully manufactured using laser aided additive manufacturing (LAAM). The microstructure and mechanical behaviors of the as-fabricated HEAs were investigated. The as-built HEAs exhibit directional solidification at regions close to the melt-pool boundaries, forming dendritic columnar grains and transiting to equiaxed grains further away from the boundaries. Compared with the conventionally cast HEAs, the CoCrFeNiMn fabricated using LAAM possesses significantly higher yield strength (518 MPa) and ultimate tensile strength (660 MPa). The strengthening effect is attributed to finer grains and could be explained quantitatively through grain boundary strengthening. The as-built HEA shows a simultaneous enhancement in yield strength and ductility with decreasing testing temperature. The improved low temperature tensile properties could be ascribed to the formation of deformation twins at low temperature, which results in a steady strain hardening behavior. This work demonstrates the potential of using LAAM technology to extend the application of HEAs with fabrication of larger and more complex parts with good mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call