Abstract

Fatigue performances of critical structures are strongly affected by the microstructural (e.g. grain, defect, inclusion, etc.) size effect, and it is thus important to quantify their detrimental effect. In this work, a numerical procedure is constructed to quantify the influence of microstructure on the mechanical and fatigue behaviors of Ni-based superalloy GH4169. Specifically, by combining sub-modelling approach with crystal plasticity constitutive model, a dual-scale modelling approach is developed for studying grain-level mechanical behavior of Ni-based superalloy GH4169 notched components. In addition, the dislocation-based Tanaka-Mura-Wu model is applied for fatigue crack initiation life prediction. The Paris law is then utilized for fatigue crack propagation analysis based on the simulated short crack. To study the microstructural size effect on fatigue crack initiation and propagation behaviors, sub-models containing various grain orientation, grain size, defect size/shape are built and analysed. Finally, a series of fatigue tests on notched specimens of Ni-based superalloy GH4169 were carried out for method validation. Results indicate that the established dual-scale modelling approach and fatigue life prediction framework yields good agreement with experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call