Abstract

In this paper, the fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy with nearly lamellar microstructure was studied by in situ scanning electron microscope observation at 750 °C. Dog-bone shaped specimens with a single-edge notch were used in the test. The results showed that the fatigue crack initiated first at the central portion of the notch, and then shifted to the edge portion. As the cycle numbers went on increasing, these cracks joined together and formed a main fatigue crack, which could propagate along the surface of the specimen. During the fatigue crack propagation two or three propagation stages were found depending on the microstructure of the crack tip. When the fatigue crack was parallel to the lamellar laths, it exhibited the rapid, steady and accelerated propagation stages successively, while when the fatigue crack was perpendicular to the lamellar laths, it exhibited only the steady and accelerated propagation stages, with no rapid propagation stage being found. In these different propagation stages the fatigue crack propagation rates were different and depended intensively on the lamellar laths orientation, lamellar colony size, equiaxed gamma grains and peak stress intensity factor K max . Based on the experimental data it was concluded that the fatigue crack initiation lifetime was much longer than the propagation lifetime for the single-edge notched specimens at 750 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call