Abstract
The gears in aviation gear systems are susceptible to fatigue fracture due to high-speed, heavy-load, and load alternation operating conditions. Therefore, a numerical calculation model with multiple mesh positions loading form has been proposed in this paper to analyze the fatigue crack initiation and propagation behavior, and to estimate the fatigue life of these gears. The fatigue life of the gear is determined by separately calculating the fatigue crack initiation life and the fatigue crack propagation life. The tooth root fatigue stress and the fatigue initiation life are calculated by the multi-axial fatigue life prediction method with the Smith-Watson-Topper criterion and the critical plane method. Afterwards, the tooth root stress–strain field is calculated in Finite element (FE) software and the stress intensity factors of the crack tip are calculated in three-dimensional (3D) crack analysis software. Then, the tooth root fatigue crack propagation trajectory and the fatigue crack propagation life are obtained separately. Finally, the influence mechanism of the loading conditions, the geometry parameters of gears, and the initial crack positions on the tooth root fatigue crack initiation life, propagation life, and fatigue crack propagation trajectory are analyzed, and a tooth fatigue test bench is built for verifying the crack propagation trajectory.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.