Abstract

Damage progress in toughened-type carbon fibre-reinforced plastic (CFRP) cross-ply laminates under tensile fatigue loading was measured using the replica technique. The laminate configuration was [0/90 m/0], where m = 4, 8 and 12. The damage parameters, transverse crack density and delamination ratio, were determined. A power-law model was proposed, relating the cyclic strain range and the number of cycles at transverse crack initiation. Based on experimental data, a simple shear-lag analysis combined with the modified Paris law was conducted to model the transverse crack multiplication. An extension of the shearlag analysis for laminates containing delaminations initiating from the tips of the transverse cracks was used to conduct a modified Paris law analysis for delamination growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.