Abstract

Dynamic and static delamination characteristics of two unidirectional carbon fibre-reinforced epoxy composite laminates (Hercules MI 1610 and Torayca T300) have been studied under impact and low-speed (2 mm min 1) test conditions. The influence of interlaminar reinforcement with chopped Kevlar fibres on toughness has also been examined. The quasi-static or low-speed delamination tests were conducted with the usual double cantilever beam, end-notched flexure and mixed-mode flexure specimens. To determine the corresponding mode I, mode II and mixed-mode toughnesses under the impact condition, a special specimen design has been adopted and tests were performed with a Charpy impact machine. The novel aspect of the test scheme in the present study is that a single-plane delamination surface with a well-defined fracture mode has been obtained. The dynamic and static delamination characteristics of the same fracture mode were then studied by scanning electron microscopy, and special features were compared. While interlaminar reinforcement with a small amount of chopped Kevlar fibres resulted in an appreciable increase in the quasi-static delamination toughness, it was less effective under the impact condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call