Abstract

The use of freshly harvested and processed pine trees as a container substrate for greenhouse and nursery crop production is a relatively new concept, and fundamental knowledge of the construction of a pine tree substrate (PTS) for optimal physical properties is insufficient. Therefore, this research was conducted to determine the influence of mixing PTSs produced with different wood particle sizes and adding other amendments to PTS on substrate physical properties and plant growth compared with traditional substrates. Coarse pine wood chips produced from 15-year-old loblolly pine trees (Pinus taeda L.) were ground in a hammermill fitted with either a 4.76-mm screen or with no screen (PTS-NS) allowing a fine and a coarse particle PTS to be produced. Increasing proportions of the finer (4.76-mm) PTS to the coarser PTS (PTS-NS) resulted in increased container capacity (CC) and shoot growth of ‘Inca Gold’ marigold (Tagetes erecta L.). In another study, PTSs were manufactured in a hammermill fitted with different screen sizes: 4.76, 6.35, 9.54, or 15.8 mm as well as PTS-NS. After being hammermilled, each of the five PTSs was then amended (by mixing) with 10% sand (PTS-S), 25% peatmoss (PTS-PM), or left unamended. Pine tree substrates were also produced by adding 25% aged pine bark (PB) to pine wood chips before being ground in a hammermill with each of the five screen sizes mentioned (PTS-HPB). These five substrates were used unamended as well as amended with 10% sand after grinding (PTS-HPBS). Control treatments included peat-lite (PL) and 100% aged PB for a total of 27 substrates evaluated in this study. Container capacity and marigold growth increased as screen size decreased and with the additions of peatmoss (PTS-PM) or hammering with PB (PTS-HPB) to PTS. Container capacity for all substrates amended with peatmoss or PB was within the recommended range of 45% to 65% for container substrates, but only with the more finely ground PTS-4.76-mm resulted in marigold growth comparable to PL and PB. However, when the PTS-NS was amended by mixing in 25% peat or hammering with 25% PB, growth of marigold was equal to plants grown in PL or PB. In a third study, hammering PTS-NS with 25% PB followed by the addition of 10% sand increased dry weight of both azalea (Rhododendron ×hybrida ‘Girard Pleasant White’) and spirea (Spiraea nipponica Maxim. ‘Snowmound’) resulting in growth equal to plants grown in 100% PB. This work shows that amending coarsely ground PTS with finer particle PTS or with other materials (peatmoss, aged PB, or sand) can result in a substrate with comparable physical properties such as CC and plant growth compared with 100% PL or PB.

Highlights

  • Additional index words. air space, container capacity, container substrate, loblolly pine, pine bark, pine chips, wood substrate

  • Small proportions of pine tree substrates (PTS)-4.76 (50% or less) added to the coarse PTS-no screen (NS) did not provide enough fine particles to produce a PTS with the recommended CC of at least 45%, these data do indicate the potential of altering CC by combining different wood particle sizes (Table 1)

  • Adding a more finely ground PTS produced with a 1.59-mm screen rather than 100%PTS-4.76 (14.9% fines; Table 1), would have increased the fraction of fine particles and the CC, most likely to equal that of PL and pine bark (PB)

Read more

Summary

Objectives

Based on these initial observations, the purpose of this work was to evaluate the influence of: 1) combining PTSs of different particles sizes; and 2) adding peatmoss, aged PB, and sand to PTSs of different particle sizes on substrate physical properties and plant growth

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.