Abstract

The objective of this study was to evaluate a pine tree substrate (PTS) for decomposition, changes in physical and chemical properties, and substrate carbon dioxide (CO2) efflux (microbial activity) during a long-term production cycle under outdoor nursery conditions. Substrates used in this study were PTS constructed using a 4.76-mm hammer mill screen and aged pine bark (PB). Plastic nursery containers were filled with each substrate and amended with either 4.2 or 8.4 kg·m−3 Osmocote Plus fertilizer and planted with Cotoneaster horizontalis or left fallow. Substrate solution chemical properties and nutrient concentrations were determined each month during the summers of 2006 and 2007 in addition to measuring substrate CO2 efflux (μmol CO2/m−2·s−1) as an assessment of microbial activity. Substrate breakdown (decomposition) was determined with particle size analysis and physical property determination on substrates at the conclusion of the study (70 weeks). Substrate solution pH was higher in PTS than in PB at both fertilizer rates in 2006, but pH levels decreased over time and were lower in PTS at both fertilizer rates in 2007. Substrate solution electrical conductivity levels, nitrate, phosphorus, and potassium concentrations were all generally higher in PB than in PTS at both fertilizer rates through both years. Pine tree substrate decomposition was higher when plants were present in the containers [evident by an increase in fine substrate particles (less than 0.5 mm) after 70 weeks], but breakdown was equal at both fertilizer rates. Shrinkage of PTS in the presence of plants was equal to the shrinkage observed in PB with plants, but shrinkage was higher in fallow PTS containers than PTS with plants. Substrate air apace (AS) was highest in PTS and container capacity (CC) was equal in PB and PTS at potting. Substrate AS decreased and CC increased in both substrates after 70 weeks but remained in acceptable ranges for container substrates. Substrate CO2 efflux rates were higher in PTS compared with PB at both fertilizer rates indicating higher microbial activity, thereby increasing the potential for nutrient immobilization and substrate breakdown. This work provides evidence that PTS decomposition is unaffected by fertilizer rate and that substrate shrinkage in containers with plants is similar to PB after two growing seasons (70 weeks), which addresses two major concerns about the use and performance of PTS for long-term nursery crop production. This work also shows that the higher microbial activity in PTS increases the potential of microbial nutrient immobilization, which is likely the reason for the lower substrate nutrient levels reported for PTS compared with PB over 70 weeks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call