Abstract

Pine tree substrate (PTS), for container plant production, is a relatively new alternative to the commonly used pine bark and peat substrates. Fertility management requires knowledge of nitrogen transformations in this new substrate. The objective of this study was to document the occurrence of nitrification in PTS and to determine if nitrification and density of nitrifying microorganisms are affected by substrate storage time and lime and peat amendments. Pine tree substrate was manufactured by hammermilling chips of ≈15-year-old loblolly pine trees (Pinus taeda L.) through two screen sizes, 4.76 mm (PTS) and 15.9 mm amended with peat (3PTS:1 peat, v:v, PTSP). Pine tree substrate and PTSP were amended with lime at five rates and a peat–perlite mix (4 peat:1 perlite, v:v, PL) served as a control treatment for a total of 11 treatments. Substrates were prepared, placed in plastic storage bags, and stored on shelves in an open shed in Blacksburg, VA. Subsamples were taken at 1, 42, 84, 168, 270, and 365 days after storage. At each subsampling day, each substrate was placed into 12 1-L containers. Six of the 12 were left fallow and six were planted with 14-day-old marigold (Tagetes erecta L. ‘Inca Gold’) seedlings; all containers were placed on a greenhouse bench. Substrates were also collected for most probable number (MPN) assays for nitrifying microorganism quantification. Substrate solution pH, electrical conductivity (EC), ammonium-N (NH4-N), and nitrate-N (NO3-N) were measured on fallow treatments. Marigold substrate solution pH, EC, NH4-N, and NO3-N were measured after 3 weeks of marigold growth. Nitrate-N was detected in fallow containers at low concentrations (0.4 to 5.4 mg·L−1) in PTS in all limed treatments at all subsampling days, but in the non-limed treatment, only at Days 270 and 365. Nitrate-N was detected in the fallow containers at low concentrations (0.7 to 13.7 mg·L−1) in PTSP in the 4- and 6-kg·m−3 lime rates at all subsampling days. Nitrite-oxidizing microorganisms were present in PTS at all subsampling days with the highest numbers measured at Day 1. Ammonium-to-nitrate ratios for the marigold substrate solution extracts for both PTS and PTSP decreased as pH increased. This study shows that nitrifying microorganisms are present and nitrification occurs in PTS and PTSP and is positively correlated to substrate pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.