Abstract

We present experimental results for methane production from ATJ graphite impacted by atomic and molecular D ions in the energy range 5–60 eV/D. A systematic trend of the methane yields for the different molecular species compared at the same impact energy/D is observed: while all three species lead to methane yields that coincide within the experimental uncertainty at the high energy end of the investigated range, at lower energies the yields diverge by progressively larger amounts, with the incident triatomic molecular ion leading to the largest yields per atom, and the atomic ion to the smallest. The difference at the lowest investigated energy (10 eV/D) is about a factor of two. Total chemical sputtering yields obtained by classical molecular dynamic simulations also indicate that molecular projectiles lead to larger yields per atom than atomic projectiles. The energy dependence of the total yield increase obtained by the simulations, however, is different than that observed experimentally for methane production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.