Abstract

Interspecific metabolite transfer (ISMT) is a novel approach for plants biofortification. In this study, the effect of tea (Camellia sinensis; Cs), with or without membrane permeabilizers EDTA and Tween, as a donor plant on broccoli, cauliflower and kale sprouts was investigated. As a result, caffeine- and catechin-enriched broccoli, cauliflower and kale microgreens were produced. Kale sprouts were most permeable for catechins from Cs, while cauliflower was most permeable for caffeine. Cs + EDTA significantly increased vitamin C in broccoli and kale. Among the tested enzymes activity, pancreatic lipase was the most affected by the treatment with broccoli and cauliflower biofortified with Cs or Cs combined with permeabilizers. Broccoli sprouts biofortified with Cs most significantly inhibited α-amylase, while those biofortified with Cs combined with permeabilizers most significantly inhibited α-glucosidase. Results point to ISMT combined with membrane permeabilizers as a promising and eco-friendly biofortification strategy to improve the biopotential of Brassica microgreens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call