Abstract

ABSTRACTMedical images have made a great impact on medicine, diagnosis, and treatment. The most important part of image processing is image segmentation. Many image segmentation methods for medical image analysis have been presented in this paper. In this paper, we have described the latest segmentation methods applied in medical image analysis. The advantages and disadvantages of each method are described besides examination of each algorithm with its application in Magnetic Resonance Imaging and Computed Tomography image analysis. Each algorithm is explained separately with its ability and features for the analysis of grey-level images. In order to evaluate the segmentation results, some popular benchmark measurements are presented in the final section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.