Abstract
Survey/review study Deep Learning Attention Mechanism in Medical Image Analysis: Basics and Beyonds Xiang Li 1, Minglei Li 1, Pengfei Yan 1, Guanyi Li 1, Yuchen Jiang 1, Hao Luo 1,*, and Shen Yin 2 1 Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 2 Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim 7034, Norway * Correspondence: hao.luo@hit.edu.cn Received: 16 October 2022 Accepted: 25 November 2022 Published: 27 March 2023 Abstract: With the improvement of hardware computing power and the development of deep learning algorithms, a revolution of "artificial intelligence (AI) + medical image" is taking place. Benefiting from diversified modern medical measurement equipment, a large number of medical images will be produced in the clinical process. These images improve the diagnostic accuracy of doctors, but also increase the labor burden of doctors. Deep learning technology is expected to realize an auxiliary diagnosis and improve diagnostic efficiency. At present, the method of deep learning technology combined with attention mechanism is a research hotspot and has achieved state-of-the-art results in many medical image tasks. This paper reviews the deep learning attention methods in medical image analysis. A comprehensive literature survey is first conducted to analyze the keywords and literature. Then, we introduce the development and technical characteristics of the attention mechanism. For its application in medical image analysis, we summarize the related methods in medical image classification, segmentation, detection, and enhancement. The remaining challenges, potential solutions, and future research directions are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Network Dynamics and Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.