Abstract

Mg–O2 batteries appear to be a promising alternative to Li-O2 system due to the high abundancy and volumetric energy density of Mg. Although much effort has been put into research on Li-O2 batteries, little is known about the oxygen reduction and evolution in Mg2+-containing aprotic electrolytes. In this paper, we present a detailed analysis of the ORR in Mg2+-containing DMSO using RRDE and DEMS-techniques and derive a more general reaction mechanism of ORR in aprotic electrolytes using the results for Li+, Na+ and K+-containing DMSO. O2 first reacts via an initial adsorption step to superoxide which, in the presence of Mg2+, is subsequently reduced to peroxide as the main reaction product. However, this product undergoes further reactions leading to a deactivation of the electrode. Regarding the reversibility, unfortunately no OER was observed and reactivation of the electrode proved difficult.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.