Abstract

•High-donicity solvent promotes soluble LiO2 generation upon Li2O2 oxidation•Preferential formation of soluble LiO2 leads to poor stability of Li-O2 battery•Bypassing the generation of soluble LiO2 improves the stability of Li-O2 batteries Rechargeable lithium-oxygen (Li-O2) batteries promise to provide energy density of 3–5 times that of state-of-the-art Li-ion batteries. However, unsolved discrepancies on charging intermediates and oxygen evolution reaction mechanism prevent rational electrolyte design for efficient and long-life Li-O2 batteries. In this study, we reveal a solvent-controlled oxidation mechanism of Li2O2 and that preferential formation of soluble LiO2 in the high-donicity solvents leads to poor cycling stability. Our work offers new insights into resolving the discrepancy of Li-O2 charging mechanism and design strategies to achieve efficient and stable Li-O2 batteries. Long-unresolved discrepancies in the oxidation mechanism of lithium peroxide (Li2O2) impede electrode/electrolyte development for Li-O2 batteries. In this study, we report direct evidence of the formation of soluble LiO2 upon the oxidation of Li2O2 and reveal a strong solvent-controlled Li2O2-oxidation reaction mechanism. We exploit a thin-film rotating ring-disk electrode to show that soluble LiO2 is generated when oxidizing Li2O2 in high-donicity solvent but is absent in low-donicity glyme-based solvent. Synchrotron-based X-ray absorption near-edge structure spectroscopy further proved the presence of LiO2 upon Li2O2 oxidation in high-donicity solvent but not in low-donicity solvent. We show that preferential formation of soluble LiO2 in the high-donicity solvent could account for poor cycling stability, which suggests that strategies that bypass the formation of soluble LiO2 upon Li2O2 oxidation are critical. Our work offers new insights in resolving the discrepancy in Li-O2 charging mechanism and design strategies to achieve efficient and long-life Li-O2 batteries. Long-unresolved discrepancies in the oxidation mechanism of lithium peroxide (Li2O2) impede electrode/electrolyte development for Li-O2 batteries. In this study, we report direct evidence of the formation of soluble LiO2 upon the oxidation of Li2O2 and reveal a strong solvent-controlled Li2O2-oxidation reaction mechanism. We exploit a thin-film rotating ring-disk electrode to show that soluble LiO2 is generated when oxidizing Li2O2 in high-donicity solvent but is absent in low-donicity glyme-based solvent. Synchrotron-based X-ray absorption near-edge structure spectroscopy further proved the presence of LiO2 upon Li2O2 oxidation in high-donicity solvent but not in low-donicity solvent. We show that preferential formation of soluble LiO2 in the high-donicity solvent could account for poor cycling stability, which suggests that strategies that bypass the formation of soluble LiO2 upon Li2O2 oxidation are critical. Our work offers new insights in resolving the discrepancy in Li-O2 charging mechanism and design strategies to achieve efficient and long-life Li-O2 batteries. Non-aqueous lithium-oxygen (Li-O2) batteries have attracted intensive research attention owing to their potential to provide gravimetric energy density 3–5 times that of conventional Li-ion batteries.1Abraham K.M. Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery.J. Electrochem. Soc. 1996; 143: 1-5Crossref Scopus (1769) Google Scholar, 2Black R. Adams B. Nazar L.F. Non-aqueous and hybrid Li-O2 batteries.Adv. Energy Mater. 2012; 2: 801-815Crossref Scopus (431) Google Scholar, 3Bruce P.G. Freunberger S.A. Hardwick L.J. Tarascon J.M. Li-O2 and Li-S batteries with high energy storage.Nat. Mater. 2012; 11: 19-29Crossref Scopus (7409) Google Scholar, 4Bergner B.J. Schürmann A. Peppler K. Garsuch A. Janek J. TEMPO: a mobile catalyst for rechargeable Li-O2 batteries.J. Am. Chem. Soc. 2014; 136: 15054-15064Crossref PubMed Scopus (388) Google Scholar, 5Lu Y.-C. Gallant B.M. Kwabi D.G. Harding J.R. Mitchell R.R. Whittingham M.S. Shao-Horn Y. Lithium-oxygen batteries: bridging mechanistic understanding and battery performance.Energy Environ. Sci. 2013; 6: 750-768Crossref Scopus (734) Google Scholar, 6Liu Y. Wang R. Lyu Y. Li H. Chen L. Rechargeable Li/CO2-O2 (2:1) battery and Li/CO2 battery.Energy Environ. Sci. 2014; 7: 677-681Crossref Scopus (243) Google Scholar, 7Yi J. Guo S. He P. Zhou H. Status and prospects of polymer electrolytes for solid-state Li-O2 (air) batteries.Energy Environ. Sci. 2017; 10: 860-884Crossref Google Scholar, 8Yin Y.-B. Xu J.-J. Liu Q.-C. Zhang X.-B. Macroporous interconnected hollow carbon nanofibers inspired by golden-toad eggs toward a binder-free, high-rate, and flexible electrode.Adv. Mater. 2016; 28: 7494-7500Crossref PubMed Scopus (151) Google Scholar, 9Zhu Y.-H. Yang X. Bao D. Bie X.-F. Sun T. Wang S. Jiang Y.-S. Zhang X.-B. Yan J.-M. Jiang Q. High-energy-density flexible potassium-ion battery based on patterned electrodes.Joule. 2018; 2: 736-746Abstract Full Text Full Text PDF Scopus (169) Google Scholar, 10Yin Y.-B. Yang X.-Y. Chang Z.-W. Zhu Y.-H. Liu T. Yan J.-M. Jiang Q. A water-/fireproof flexible lithium-oxygen battery achieved by synergy of novel architecture and multifunctional separator.Adv. Mater. 2017; 30: 1703791Crossref Scopus (53) Google Scholar However, Li-O2 technology has been suffering from poor cycle life, low rate capability, and poor round-trip efficiency.2Black R. Adams B. Nazar L.F. Non-aqueous and hybrid Li-O2 batteries.Adv. Energy Mater. 2012; 2: 801-815Crossref Scopus (431) Google Scholar, 3Bruce P.G. Freunberger S.A. Hardwick L.J. Tarascon J.M. Li-O2 and Li-S batteries with high energy storage.Nat. Mater. 2012; 11: 19-29Crossref Scopus (7409) Google Scholar, 5Lu Y.-C. Gallant B.M. Kwabi D.G. Harding J.R. Mitchell R.R. Whittingham M.S. Shao-Horn Y. Lithium-oxygen batteries: bridging mechanistic understanding and battery performance.Energy Environ. Sci. 2013; 6: 750-768Crossref Scopus (734) Google Scholar These challenges are deeply connected to technological barriers, including the chemical instabilities between reaction intermediates, electrolytes,11Lu Y.-C. Shao-Horn Y. Probing the reaction kinetics of the charge reactions of nonaqueous Li-O2 batteries.J. Phys. Chem. Lett. 2013; 4: 93-99Crossref PubMed Scopus (289) Google Scholar, 12McCloskey B.D. Bethune D.S. Shelby R.M. Girishkumar G. Luntz A.C. Solvents’ critical role in nonaqueous lithium-oxygen battery electrochemistry.J. Phys. Chem. Lett. 2011; 2: 1161-1166Crossref PubMed Scopus (863) Google Scholar, 13Freunberger S.A. Chen Y. Drewett N.E. Hardwick L.J. Bardé F. Bruce P.G. The lithium-oxygen battery with ether-based electrolytes.Angew. Chem. Int. Ed. 2011; 50: 8609-8613Crossref PubMed Scopus (910) Google Scholar and carbon electrodes.14McCloskey B.D. Speidel A. Scheffler R. Miller D.C. Viswanathan V. Hummelshøj J.S. Nørskov J.K. Luntz A.C. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries.J. Phys. Chem. Lett. 2012; 3: 997-1001Crossref PubMed Scopus (926) Google Scholar, 15Ottakam Thotiyl M.M. Freunberger S.A. Peng Z. Bruce P.G. The carbon electrode in nonaqueous Li-O2 cells.J. Am. Chem. Soc. 2012; 135: 494-500Crossref PubMed Scopus (1044) Google Scholar In-depth understanding of the reaction mechanisms during discharge (oxygen reduction reaction [ORR]) and charge (oxygen evolution reaction [OER]) are the prerequisites for further advancement of Li-O2 technology.16Liang Z. Zou Q. Wang Y. Lu Y.-C. Recent progress in applying in situ/operando characterization techniques to probe the solid/liquid/gas interfaces of Li-O2 batteries.Small Methods. 2017; 1: 1700150Crossref Scopus (46) Google Scholar, 17Liu Q. Chang Z. Li Z. Zhang X. Flexible metal-air batteries: progress, challenges, and perspectives.Small Methods. 2017; 2: 1700231Crossref Scopus (140) Google Scholar, 18Lai N.-C. Cong G. Liang Z. Lu Y.-C. A highly active oxygen evolution catalyst for lithium-oxygen batteries enabled by high-surface-energy facets.Joule. 2018; 2https://doi.org/10.1016/j.joule.2018.04.009Abstract Full Text Full Text PDF Scopus (42) Google Scholar The Li-O2 discharge reaction mechanism has been intensively studied and has widely established that the ORR in Li+-containing non-aqueous solvents undergoes two major steps starting from the formation of superoxide (O2−),19Laoire C.O. Mukerjee S. Abraham K.M. Plichta E.J. Hendrickson M.A. Elucidating the mechanism of oxygen reduction for lithium-air battery applications.J. Phys. Chem. C. 2009; 113: 20127-20134Crossref Scopus (583) Google Scholar, 20Laoire C.O. Mukerjee S. Abraham K.M. Plichta E.J. Hendrickson M.A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery.J. Phys. Chem. C. 2010; 114: 9178-9186Crossref Scopus (800) Google Scholar, 21Lu Y.-C. Gasteiger H.A. Crumlin E. McGuire R. Shao-Horn Y. Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries.J. Electrochem. Soc. 2010; 157: A1016-A1025Crossref Scopus (252) Google Scholar, 22Peng Z. Freunberger S.A. Hardwick L.J. Chen Y. Giordani V. Bardé F. Novák P. Graham D. Tarascon J.-M. Bruce P.G. Oxygen reactions in a non-aqueous Li+ electrolyte.Angew. Chem. Int. Ed. 2011; 50: 6351-6355Crossref PubMed Scopus (481) Google Scholar, 23Trahan M.J. Mukerjee S. Plichta E.J. Hendrickson M.A. Abraham K.M. Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte.J. Electrochem. Soc. 2013; 160: A259-A267Crossref Scopus (225) Google Scholar which combines with Li+ to form surface-adsorbed LiO2(ads) and/or soluble LiO2(sol) in the solution.19Laoire C.O. Mukerjee S. Abraham K.M. Plichta E.J. Hendrickson M.A. Elucidating the mechanism of oxygen reduction for lithium-air battery applications.J. Phys. Chem. C. 2009; 113: 20127-20134Crossref Scopus (583) Google Scholar, 20Laoire C.O. Mukerjee S. Abraham K.M. Plichta E.J. Hendrickson M.A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery.J. Phys. Chem. C. 2010; 114: 9178-9186Crossref Scopus (800) Google Scholar, 21Lu Y.-C. Gasteiger H.A. Crumlin E. McGuire R. Shao-Horn Y. Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries.J. Electrochem. Soc. 2010; 157: A1016-A1025Crossref Scopus (252) Google Scholar, 23Trahan M.J. Mukerjee S. Plichta E.J. Hendrickson M.A. Abraham K.M. Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte.J. Electrochem. Soc. 2013; 160: A259-A267Crossref Scopus (225) Google Scholar, 24Abraham K.M. Electrolyte-directed reactions of the oxygen electrode in lithium-air batteries.J. Electrochem. Soc. 2015; 162: A3021-A3031Crossref Scopus (111) Google Scholar, 25Johnson L. Li C. Liu Z. Chen Y. Freunberger S.A. Ashok P.C. Praveen B.B. Dholakia K. Tarascon J.-M. Bruce P.G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.Nat. Chem. 2014; 6: 1091-1099Crossref PubMed Scopus (763) Google Scholar, 26Aetukuri N.B. McCloskey B.D. García J.M. Krupp L.E. Viswanathan V. Luntz A.C. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries.Nat. Chem. 2015; 7: 50-56Crossref PubMed Scopus (612) Google Scholar These discharge intermediates then undergo a second electron transfer on the electrode surface or a disproportionation reaction in the solution to form solid product, Li2O2, as shown in Equations 1, 2, and 3.19Laoire C.O. Mukerjee S. Abraham K.M. Plichta E.J. Hendrickson M.A. Elucidating the mechanism of oxygen reduction for lithium-air battery applications.J. Phys. Chem. C. 2009; 113: 20127-20134Crossref Scopus (583) Google Scholar, 20Laoire C.O. Mukerjee S. Abraham K.M. Plichta E.J. Hendrickson M.A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery.J. Phys. Chem. C. 2010; 114: 9178-9186Crossref Scopus (800) Google Scholar, 21Lu Y.-C. Gasteiger H.A. Crumlin E. McGuire R. Shao-Horn Y. Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries.J. Electrochem. Soc. 2010; 157: A1016-A1025Crossref Scopus (252) Google Scholar, 23Trahan M.J. Mukerjee S. Plichta E.J. Hendrickson M.A. Abraham K.M. Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte.J. Electrochem. Soc. 2013; 160: A259-A267Crossref Scopus (225) Google Scholar, 24Abraham K.M. Electrolyte-directed reactions of the oxygen electrode in lithium-air batteries.J. Electrochem. Soc. 2015; 162: A3021-A3031Crossref Scopus (111) Google Scholar, 25Johnson L. Li C. Liu Z. Chen Y. Freunberger S.A. Ashok P.C. Praveen B.B. Dholakia K. Tarascon J.-M. Bruce P.G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.Nat. Chem. 2014; 6: 1091-1099Crossref PubMed Scopus (763) Google Scholar, 26Aetukuri N.B. McCloskey B.D. García J.M. Krupp L.E. Viswanathan V. Luntz A.C. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries.Nat. Chem. 2015; 7: 50-56Crossref PubMed Scopus (612) Google Scholar Studies using in situ Raman spectroscopy,22Peng Z. Freunberger S.A. Hardwick L.J. Chen Y. Giordani V. Bardé F. Novák P. Graham D. Tarascon J.-M. Bruce P.G. Oxygen reactions in a non-aqueous Li+ electrolyte.Angew. Chem. Int. Ed. 2011; 50: 6351-6355Crossref PubMed Scopus (481) Google Scholar, 25Johnson L. Li C. Liu Z. Chen Y. Freunberger S.A. Ashok P.C. Praveen B.B. Dholakia K. Tarascon J.-M. Bruce P.G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.Nat. Chem. 2014; 6: 1091-1099Crossref PubMed Scopus (763) Google Scholar, 27Frith J.T. Russell A.E. Garcia-Araez N. Owen J.R. An in-situ Raman study of the oxygen reduction reaction in ionic liquids.Electrochem. Commun. 2014; 46: 33-35Crossref Scopus (41) Google Scholar, 28Yu Q. Ye S. In situ study of oxygen reduction in dimethyl sulfoxide (DMSO) solution: a fundamental study for development of the lithium-oxygen battery.J. Phys. Chem. C. 2015; 119: 12236-12250Crossref Scopus (109) Google Scholar, 29Galloway T.A. Hardwick L.J. Utilizing in situ electrochemical SHINERS for oxygen reduction reaction studies in aprotic electrolytes.J. Phys. Chem. Lett. 2016; 7: 2119-2124Crossref PubMed Scopus (62) Google Scholar, 30Zhai D. Wang H.-H. Lau K.C. Gao J. Redfern P.C. Kang F. Li B. Indacochea E. Das U. Sun H.-H. et al.Raman evidence for late stage disproportionation in a Li-O2 battery.J. Phys. Chem. Lett. 2014; 5: 2705-2710Crossref PubMed Scopus (129) Google Scholar operando UV-vis spectroscopy,28Yu Q. Ye S. In situ study of oxygen reduction in dimethyl sulfoxide (DMSO) solution: a fundamental study for development of the lithium-oxygen battery.J. Phys. Chem. C. 2015; 119: 12236-12250Crossref Scopus (109) Google Scholar X-ray transmission microscopy,31Olivares-Marín M. Sorrentino A. Lee R.-C. Pereiro E. Wu N.-L. Tonti D. Spatial distributions of discharged products of lithium-oxygen batteries revealed by synchrotron X-ray transmission microscopy.Nano Lett. 2015; 15: 6932-6938Crossref PubMed Scopus (50) Google Scholar rotating ring-disk electrode (RRDE),23Trahan M.J. Mukerjee S. Plichta E.J. Hendrickson M.A. Abraham K.M. Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte.J. Electrochem. Soc. 2013; 160: A259-A267Crossref Scopus (225) Google Scholar, 24Abraham K.M. Electrolyte-directed reactions of the oxygen electrode in lithium-air batteries.J. Electrochem. Soc. 2015; 162: A3021-A3031Crossref Scopus (111) Google Scholar, 25Johnson L. Li C. Liu Z. Chen Y. Freunberger S.A. Ashok P.C. Praveen B.B. Dholakia K. Tarascon J.-M. Bruce P.G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.Nat. Chem. 2014; 6: 1091-1099Crossref PubMed Scopus (763) Google Scholar, 32Trahan M.J. Gunasekara I. Mukerjee S. Plichta E.J. Hendrickson M.A. Abraham K.M. Solvent-coupled catalysis of the oxygen electrode reactions in lithium-air batteries.J. Electrochem. Soc. 2014; 161: A1706-A1715Crossref Scopus (35) Google Scholar, 33Gunasekara I. Mukerjee S. Plichta E.J. Hendrickson M.A. Abraham K.M. A study of the influence of lithium salt anions on oxygen reduction reactions in Li-air batteries.J. Electrochem. Soc. 2015; 162: A1055-A1066Crossref Scopus (75) Google Scholar, 34Wang Y. Liang Z. Zou Q. Cong G. Lu Y.-C. Mechanistic insights into catalyst-assisted nonaqueous oxygen evolution reaction in lithium-oxygen batteries.J. Phys. Chem. C. 2016; 120: 6459-6466Crossref Scopus (59) Google Scholar, 35Kwabi D.G. Tułodziecki M. Pour N. Itkis D.M. Thompson C.V. Shao-Horn Y. Controlling solution-mediated reaction mechanisms of oxygen reduction using potential and solvent for aprotic lithium-oxygen batteries.J. Phys. Chem. Lett. 2016; 7: 1204-1212Crossref PubMed Scopus (80) Google Scholar, 36Torres W. Mozhzhukhina N. Tesio A.Y. Calvo E.J. A rotating ring disk electrode study of the oxygen reduction reaction in lithium containing dimethyl sulfoxide electrolyte: role of superoxide.J. Electrochem. Soc. 2014; 161: A2204-A2209Crossref Scopus (38) Google Scholar, 37Amin H.M.A. Molls C. Bawol P.P. Baltruschat H. The impact of solvent properties on the performance of oxygen reduction and evolution in mixed tetraglyme-dimethyl sulfoxide electrolytes for Li-O2 batteries: mechanism and stability.Electrochim. Acta. 2017; 245: 967-980Crossref Scopus (17) Google Scholar, 38Herranz J. Garsuch A. Gasteiger H.A. Using rotating ring disc electrode voltammetry to quantify the superoxide radical stability of aprotic Li-air battery electrolytes.J. Phys. Chem. C. 2012; 116: 19084-19094Crossref Scopus (148) Google Scholar electron paramagnetic resonance (EPR),39Cao R. Walter E.D. Xu W. Nasybulin E.N. Bhattacharya P. Bowden M.E. Engelhard M.H. Zhang J.-G. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries.ChemSusChem. 2014; 7: 2436-2440Crossref PubMed Scopus (57) Google Scholar and in situ selected-area electron diffraction (SAED)40Luo L. Liu B. Song S. Xu W. Zhang J.-G. Wang C. Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy.Nat. Nanotechnol. 2017; 12: 535Crossref PubMed Scopus (123) Google Scholar have provided direct evidence to support the generation of the intermediate of LiO2 and the formation of Li2O2 during ORR.Step 1: O2 + Li+ + e− → LiO2(ads or sol)(Equation 1) Step 2: LiO2(ads) + Li+ + e− → Li2O2(Equation 2) and: LiO2(sol) + LiO2(sol) → Li2O2 + O2(Equation 3) The confirmation of the soluble discharge intermediate product LiO2(sol)23Trahan M.J. Mukerjee S. Plichta E.J. Hendrickson M.A. Abraham K.M. Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte.J. Electrochem. Soc. 2013; 160: A259-A267Crossref Scopus (225) Google Scholar, 24Abraham K.M. Electrolyte-directed reactions of the oxygen electrode in lithium-air batteries.J. Electrochem. Soc. 2015; 162: A3021-A3031Crossref Scopus (111) Google Scholar, 25Johnson L. Li C. Liu Z. Chen Y. Freunberger S.A. Ashok P.C. Praveen B.B. Dholakia K. Tarascon J.-M. Bruce P.G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.Nat. Chem. 2014; 6: 1091-1099Crossref PubMed Scopus (763) Google Scholar, 27Frith J.T. Russell A.E. Garcia-Araez N. Owen J.R. An in-situ Raman study of the oxygen reduction reaction in ionic liquids.Electrochem. Commun. 2014; 46: 33-35Crossref Scopus (41) Google Scholar, 28Yu Q. Ye S. In situ study of oxygen reduction in dimethyl sulfoxide (DMSO) solution: a fundamental study for development of the lithium-oxygen battery.J. Phys. Chem. C. 2015; 119: 12236-12250Crossref Scopus (109) Google Scholar, 31Olivares-Marín M. Sorrentino A. Lee R.-C. Pereiro E. Wu N.-L. Tonti D. Spatial distributions of discharged products of lithium-oxygen batteries revealed by synchrotron X-ray transmission microscopy.Nano Lett. 2015; 15: 6932-6938Crossref PubMed Scopus (50) Google Scholar, 32Trahan M.J. Gunasekara I. Mukerjee S. Plichta E.J. Hendrickson M.A. Abraham K.M. Solvent-coupled catalysis of the oxygen electrode reactions in lithium-air batteries.J. Electrochem. Soc. 2014; 161: A1706-A1715Crossref Scopus (35) Google Scholar, 33Gunasekara I. Mukerjee S. Plichta E.J. Hendrickson M.A. Abraham K.M. A study of the influence of lithium salt anions on oxygen reduction reactions in Li-air batteries.J. Electrochem. Soc. 2015; 162: A1055-A1066Crossref Scopus (75) Google Scholar, 34Wang Y. Liang Z. Zou Q. Cong G. Lu Y.-C. Mechanistic insights into catalyst-assisted nonaqueous oxygen evolution reaction in lithium-oxygen batteries.J. Phys. Chem. C. 2016; 120: 6459-6466Crossref Scopus (59) Google Scholar, 35Kwabi D.G. Tułodziecki M. Pour N. Itkis D.M. Thompson C.V. Shao-Horn Y. Controlling solution-mediated reaction mechanisms of oxygen reduction using potential and solvent for aprotic lithium-oxygen batteries.J. Phys. Chem. Lett. 2016; 7: 1204-1212Crossref PubMed Scopus (80) Google Scholar, 36Torres W. Mozhzhukhina N. Tesio A.Y. Calvo E.J. A rotating ring disk electrode study of the oxygen reduction reaction in lithium containing dimethyl sulfoxide electrolyte: role of superoxide.J. Electrochem. Soc. 2014; 161: A2204-A2209Crossref Scopus (38) Google Scholar, 37Amin H.M.A. Molls C. Bawol P.P. Baltruschat H. The impact of solvent properties on the performance of oxygen reduction and evolution in mixed tetraglyme-dimethyl sulfoxide electrolytes for Li-O2 batteries: mechanism and stability.Electrochim. Acta. 2017; 245: 967-980Crossref Scopus (17) Google Scholar, 38Herranz J. Garsuch A. Gasteiger H.A. Using rotating ring disc electrode voltammetry to quantify the superoxide radical stability of aprotic Li-air battery electrolytes.J. Phys. Chem. C. 2012; 116: 19084-19094Crossref Scopus (148) Google Scholar, 39Cao R. Walter E.D. Xu W. Nasybulin E.N. Bhattacharya P. Bowden M.E. Engelhard M.H. Zhang J.-G. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries.ChemSusChem. 2014; 7: 2436-2440Crossref PubMed Scopus (57) Google Scholar asserts the importance of controlling and manipulating the solvation of the discharge intermediates LiO2(sol) for Li-O2 batteries. This interplay has been widely studied and understood via the Hard Soft Acid Base theory19Laoire C.O. Mukerjee S. Abraham K.M. Plichta E.J. Hendrickson M.A. Elucidating the mechanism of oxygen reduction for lithium-air battery applications.J. Phys. Chem. C. 2009; 113: 20127-20134Crossref Scopus (583) Google Scholar, 20Laoire C.O. Mukerjee S. Abraham K.M. Plichta E.J. Hendrickson M.A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery.J. Phys. Chem. C. 2010; 114: 9178-9186Crossref Scopus (800) Google Scholar, 23Trahan M.J. Mukerjee S. Plichta E.J. Hendrickson M.A. Abraham K.M. Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte.J. Electrochem. Soc. 2013; 160: A259-A267Crossref Scopus (225) Google Scholar, 24Abraham K.M. Electrolyte-directed reactions of the oxygen electrode in lithium-air batteries.J. Electrochem. Soc. 2015; 162: A3021-A3031Crossref Scopus (111) Google Scholar, 25Johnson L. Li C. Liu Z. Chen Y. Freunberger S.A. Ashok P.C. Praveen B.B. Dholakia K. Tarascon J.-M. Bruce P.G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.Nat. Chem. 2014; 6: 1091-1099Crossref PubMed Scopus (763) Google Scholar, 41Kwabi D.G. Bryantsev V.S. Batcho T.P. Itkis D.M. Thompson C.V. Shao-Horn Y. Experimental and computational analysis of the solvent-dependent O2/Li+-O2− redox couple: standard potentials, coupling strength, and implications for lithium-oxygen batteries.Angew. Chem. Int. Ed. 2016; 128: 3181-3186Crossref Google Scholar that the stability of the ORR intermediate, O2− (a soft base) depends on the acidity of the solvated Li+, which is directly influenced by the donicity of the solvent molecule and the coordination with Li+. Solvents with strong donating ability (i.e. high-donicity solvents) give rise to stronger Li+-solvent bond strength, which lowers the hardness of the Li+.19Laoire C.O. Mukerjee S. Abraham K.M. Plichta E.J. Hendrickson M.A. Elucidating the mechanism of oxygen reduction for lithium-air battery applications.J. Phys. Chem. C. 2009; 113: 20127-20134Crossref Scopus (583) Google Scholar, 20Laoire C.O. Mukerjee S. Abraham K.M. Plichta E.J. Hendrickson M.A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery.J. Phys. Chem. C. 2010; 114: 9178-9186Crossref Scopus (800) Google Scholar, 23Trahan M.J. Mukerjee S. Plichta E.J. Hendrickson M.A. Abraham K.M. Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte.J. Electrochem. Soc. 2013; 160: A259-A267Crossref Scopus (225) Google Scholar, 24Abraham K.M. Electrolyte-directed reactions of the oxygen electrode in lithium-air batteries.J. Electrochem. Soc. 2015; 162: A3021-A3031Crossref Scopus (111) Google Scholar, 25Johnson L. Li C. Liu Z. Chen Y. Freunberger S.A. Ashok P.C. Praveen B.B. Dholakia K. Tarascon J.-M. Bruce P.G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.Nat. Chem. 2014; 6: 1091-1099Crossref PubMed Scopus (763) Google Scholar, 41Kwabi D.G. Bryantsev V.S. Batcho T.P. Itkis D.M. Thompson C.V. Shao-Horn Y. Experimental and computational analysis of the solvent-dependent O2/Li+-O2− redox couple: standard potentials, coupling strength, and implications for lithium-oxygen batteries.Angew. Chem. Int. Ed. 2016; 128: 3181-3186Crossref Google Scholar Thus the superoxide (O2−), which is a soft base, has an increased affinity for the Li+ ions solvated in solvents with high-donicity forming the complex of Li+(solvent)n---O2− (LiO2(sol)).20Laoire C.O. Mukerjee S. Abraham K.M. Plichta E.J. Hendrickson M.A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery.J. Phys. Chem. C. 2010; 114: 9178-9186Crossref Scopus (800) Google Scholar, 24Abraham K.M. Electrolyte-directed reactions of the oxygen electrode in lithium-air batteries.J. Electrochem. Soc. 2015; 162: A3021-A3031Crossref Scopus (111) Google Scholar Trahan et al.23Trahan M.J. Mukerjee S. Plichta E.J. Hendrickson M.A. Abraham K.M. Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte.J. Electrochem. Soc. 2013; 160: A259-A267Crossref Scopus (225) Google Scholar and Kwabi et al.35Kwabi D.G. Tułodziecki M. Pour N. Itkis D.M. Thompson C.V. Shao-Horn Y. Controlling solution-mediated reaction mechanisms of oxygen reduction using potential and solvent for aprotic lithium-oxygen batteries.J. Phys. Chem. Lett. 2016; 7: 1204-1212Crossref PubMed Scopus (80) Google Scholar have applied the RRDE technique to illustrate this theory, and Johnson et al.25Johnson L. Li C. Liu Z. Chen Y. Freunberger S.A. Ashok P.C. Praveen B.B. Dholakia K. Tarascon J.-M. Bruce P.G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.Nat. Chem. 2014; 6: 1091-1099Crossref PubMed Scopus (763) Google Scholar applied RRDE and in situ surface enhanced Raman spectroscopy (SERS) to comprehensively demonstrate these concepts and implications in discharge capacity and product morphologies of Li-O2 batteries. The reaction mechanism and the type of intermediates generated upon charging Li2O2 remain elusive. For the end product, in addition to O2 gas, Wandt et al.42Wandt J. Jakes P. Granwehr J. Gasteiger H.A. Eichel R.-A. Singlet oxygen formation during the charging process of an aprotic lithium-oxygen battery.Angew. Chem. Int. Ed. 2016; 128: 7006-7009Crossref Google Scholar and Mahne et al.43Mahne N. Schafzahl B. Leypold C. Leypold M. Grumm S. Leitgeb A. Gernot A. Strohmeier Wilkening M. Fontaine O. Kramer D. et al.Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium-oxygen batteries.Nat. Energy. 2017; 2: 17036Crossref Scopus (232) Google Scholar have reported that a portion of the charging end product is found to be singlet oxygen (1O2), which was attributed to be responsible for the cell degradation on cycling. For the reaction intermediates, many hypotheses have been postulated to explain how Li2O2 oxidized to evolve O2 upon charging. An early work by Peng et al.22Peng Z. Freunberger S.A. Hardwick L.J. Chen Y. Giordani V. Bardé F. Novák P. Graham D. Tarascon J.-M. Bruce P.G. Oxygen reactions in a non-aqueous Li+ electrolyte.Angew. Chem. Int. Ed. 2011; 50: 6351-6355Crossref PubMed Scopus (481) Google Scholar ruled out LiO2 as the reaction intermediate during charging as evidenced from the absence of LiO2 in the in situ SERS (room temperature) upon charging in acetonitrile (ACN, a low-donicity solvent with a donor number [DN] of 14.144Cataldo F. A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA.Eur. Chem. Bull. 2015; 4: 92-97Google Scholar), and proposed a direct two electron process.19Laoire C.O. Mukerjee S. Abraham K.M. Plichta E.J. Hendrickson M.A. Elucidating the mechanism of oxygen reduction for lithium-air battery applications.J. Phys. Chem. C. 2009; 113: 20127-20134Crossref Scopus (583) Google Scholar, 20Laoire C.O. Mukerjee S. Abraham K.M. Plichta E.J. Hendrickson M.A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery.J. Phys. Chem. C. 2010; 114: 9178-9186Crossref Scopus (800) Google Scholar, 22Peng Z. Freunberger S.A. Hardwick L.J. Chen Y. Giordani V. Bardé F. Novák P. Graham D. Tarascon J.-M. Bruce P.G. Oxygen reactions in a non-aqueous Li+ electrolyte.Angew. Chem. Int. Ed. 2011; 50: 6351-6355Crossref PubMed

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call