Abstract

Summary The aprotic lithium-oxygen (Li-O2) battery has attracted worldwide attention because of its ultrahigh theoretical energy density. However, its practical application is critically hindered by cathode passivation, large polarization, and severe parasitic reactions. Here, we demonstrate an originally designed Ru(II) polypyridyl complex (RuPC) though which the reversible expansion of Li2O2 formation and decomposition can be achieved in Li-O2 batteries. Experimental and theoretical results revealed that the RuPC can not only expand the formation of Li2O2 in electrolyte but also suppress the reactivity of LiO2 intermediate during discharge, thus alleviating the cathode passivation and parasitic reactions significantly. In addition, an initial delithiation pathway can be achieved when charging in turn; thus, the Li2O2 products can be decomposed reversibly with a low overpotential. Consequently, the RuPC-catalyzed Li-O2 batteries exhibited a high discharge capacity, a low charge overpotential, and an ultralong cycle life. This work provides an alternative way of designing the soluble organic catalysts for metal-O2 batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.