Abstract

From the detailed analysis of the dependence of threshold voltage shift and positive fixed charge/interface state generation on the stress time/temperature of negative bias temperature instability (NBTI) for various nitrogen concentrations at the oxide/Si interface, the mechanism of nitrogen-enhanced NBTI effect has been studied experimentally. The experimental results can be understood in terms of the reaction energies of the hydrogen trapping reactions at the interface, which are obtained from first-principles calculations. The calculations show that the nitrogen's lone-pair electrons can trap dissociated hydrogen species more easily than oxygen. From the experimental and theoretical studies, one can conclude that the roles of nitrogen in the NBTI are two folds, i.e., it provides more reaction sites, and it can also enhance the NBTI reaction by reducing the reaction energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call