Abstract

This paper introduces a new design for 3 × 3 universal and reversible Logic Gate, namely RLG-QCA (reversible logic gate-quantum dot cellular automata) which is implemented using QCA technology. The basic concept of our design is based on the majority voter gate approach (MVA). The suggested gate is designed, simulated and optimized using an accurate QCA cell interaction approach. The proposed gate has no crossover. It has a total area of 0.0311 μm2 and a latency of 0.5 time period only. To validate its universality, all seven primary logic gates and thirteen Boolean algorithms are realized using the proposed RLG-QCA logic gate. Then a one-bit full adder circuit is constructed with only two numbers of proposed universal logic gates and one coplanar cell crossover. The proposed architecture seems to be an ultra-efficient and stable one with a total cell count of 53 and total cell area of 0.0175 μm2 and only. Finally, the energy dissipation analysis is also performed on the proposed RLG-QCA gate as well as full adder circuit at different energy levels to confirm the sustainability and suitability of the proposed gate in ultra-low power design applications. The results exhibit extremely low energy dissipation which is an added advantage of the proposed design in implementation of digital circuits with low power dissipation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.