Abstract

We demonstrate the plasmonic analogue of a coherent photonic effect known as coherent perfect absorption. A periodically nanopatterned metal film perfectly absorbs multiple coherent light beams coupling to a single surface plasmon mode. The perfect absorbing state can be switched to a nearly perfect scattering state by tuning the phase difference between the incident beams. We theoretically explain the plasmonic coherent perfect absorption by considering time-reversal symmetry of surface plasmon amplification by stimulated emission of radiation. We experimentally demonstrate coherent control of the plasmonic absorption in good agreement with a coupled-mode theory of dissipative resonances. Associated potential applications include absorption-based plasmonic switches, modulators, and light-electricity transducers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call