Abstract

Coherent perfect absorption (CPA) is the phenomenon where a linear system with low intrinsic loss strongly absorbs two incident beams but only weakly absorbs either beam when incident separately. We present an analytical model that captures the relevant physics of CPA in one-dimensional photonic structures. This model elucidates an absorption-mediated interference effect that underlies CPA-an effect that is normally forbidden in Hermitian systems but is allowed when conservation of energy is violated due to the inclusion of loss. By studying a planar cavity model, we identify the optimal mirror reflectivity to guarantee CPA in the cavity at resonances extending in principle over any desired bandwidth. As a concrete example, we design a resonator that produces CPA in a 1-μm-thick layer of silicon over a 200-nm bandwidth in the near-infrared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call