Abstract
Coherent perfect absorber (CPA) was proposed as the time-reversed counterpart to laser: a resonator containing lossy medium instead of gain medium can absorb the coherent optical fields completely. Here, we exploit a monolayer graphene to realize the CPA in a nonresonant manner. It is found that quasi-CPA point exists in the terahertz regime for suspending monolayer graphene, and the CPA can be implemented with the assistance of proper phase modulation among two incident beams at the quasi-CPA frequencies. The graphene-based CPA is found of broadband angular selectivity: CPA point splits into two frequency bands for the orthogonal s and p polarizations at oblique incidence, and the two bands cover a wide frequency range starting from zero frequency. Furthermore, the coherent absorption can be tuned substantially by varying the gate-controlled Fermi energy. The findings of CPA with nonresonant graphene sheet can be generalized for potential applications in terahertz/infrared detections and signal processing with two-dimensional optoelectronic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.