Abstract

Injured skeletal muscle has the capacity to regenerate through a highly coordinated sequence of events that involves both myoblast migration and differentiation into myofibers. Fibrosis may impede muscle regeneration by posing as a mechanical barrier to cell migration and fusion, providing inappropriate signals for cell differentiation, and limiting vascular perfusion of the injury site, subsequently leading to incomplete functional recovery. Our previous studies demonstrated that matrix metalloproteinase-1 (MMP-1) is able to digest fibrous scar tissue and improve muscle healing after injury. The goal of this study is to investigate whether MMP-1 could further enhance muscle regeneration by improving myoblast migration and differentiation. In vitro wound healing assays, flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR), and Western blot analyses demonstrated that MMP-1 enhances myoblast migration but is not chemoattractive. We discovered that MMP-1 also enhances myoblast differentiation, which is a critical step in the sequence of muscle regeneration. In addition, RT-PCR and Western blot analyses demonstrated the up-regulation of myogenic factors after MMP-1 treatment. In vivo, we observed that myoblast transplantation was greatly improved after MMP-1 treatment within the dystrophic skeletal muscles of MDX mice. MMP-1 may therefore be able to improve muscle function recovery after injury or disease by increasing both the number of myofibers that are generated by activated myoblasts and the size of myoblast coverage area by promoting migration, thus fostering a greater degree of engraftment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call