Abstract
Endometrial cancer, the fourth most common cancer in females in the United States, with the lifetime risk for developing this disease is approximately 2.8% in women. Precise histologic evaluation and molecular classification of endometrial cancer is important for effective patient management and determining the best treatment modalities. This study introduces EndoNet, which uses convolutional neural networks for extracting histologic features and a vision transformer for aggregating these features and classifying slides based on their visual characteristics into high- and low- grade. The model was trained on 929 digitized hematoxylin and eosin-stained whole-slide images of endometrial cancer from hysterectomy cases at Dartmouth-Health. It classifies these slides into low-grade (Endometroid Grades 1 and 2) and high-grade (endometroid carcinoma FIGO grade 3, uterine serous carcinoma, carcinosarcoma) categories. EndoNet was evaluated on an internal test set of 110 patients and an external test set of 100 patients from the public TCGA database. The model achieved a weighted average F1-score of 0.91 (95% CI: 0.86–0.95) and an AUC of 0.95 (95% CI: 0.89–0.99) on the internal test, and 0.86 (95% CI: 0.80–0.94) for F1-score and 0.86 (95% CI: 0.75–0.93) for AUC on the external test. Pending further validation, EndoNet has the potential to support pathologists without the need of manual annotations in classifying the grades of gynecologic pathology tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.