Abstract
Duchenne muscular dystrophy (DMD) is a recessive disease caused by a dystrophin gene mutation. Myoblast transplantation permits to introduce the dystrophin gene in dystrophic muscle fibers. However, the success of this approach is reduced by the short duration of the regeneration following the transplantation, which reduces the number of hybrid fibers. Myostatin (MSTN) is a negative regulator of skeletal muscle development and responsible for limiting regeneration. It binds with high affinity to the activin type IIB receptor (ActRIIB). Our aim was to verify whether the success of the myoblast transplantation is enhanced by blocking the MSTN signal with expression of a dominant negative mutant of ActRIIB (dnActRIIB). In vitro, blocking MSTN activity with a lentivirus carrying dnActRIIB increased proliferation and fusion of human myoblasts because MSTN regulates the expression of several myogenic regulatory factors. In vivo, myoblasts infected with the dnActRIIB lentivirus were transplanted in immunodeficient dystrophic mice. Dystrophin immunostaining of tibialis anterior (TA) cross-sections of these mice 1 month post-transplantation revealed more human dystrophin-positive myofibers following the transplantation of dnActRIIB myoblasts than of control myoblasts. Thus, blocking the MSTN signal with dnActRIIB improved the success of myoblast transplantation by increasing the myoblast proliferation and fusion and changed the expression of myogenic regulatory factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.