Abstract
A reproducible double emulsion/solvent evaporation procedure is developed to formulate magnetic solid lipid nanoparticles (average size≈180nm) made of iron oxide cores embedded within a glyceryl trimyristate solid matrix. The physicochemical characterization of the nanocomposites ascertained the efficacy of the preparation conditions in their production, i.e. surface properties (electrokinetic and thermodynamic data) were almost indistinguishable from those of the solid lipid nanomatrix, while electron microscopy characterizations and X-ray diffraction patterns confirmed the satisfactory coverage of the magnetite nuclei. Hemocompatibility of the particles was established in vitro. Hysteresis cycle determinations defined the appropriate magnetic responsiveness of the nanocomposites, and their heating characteristics were investigated in a high frequency alternating gradient of magnetic field: a constant maximum temperature of 46°C was obtained within 40min. Finally, in vitro tests performed on human HT29 colon adenocarcinoma cells demonstrated a promising decrease in cell viability after treatment with the nanocomposites and exposure to that alternating electromagnetic field. To the best of our knowledge, this is the first time that such type of nanoformulation with very promising hyperthermia characteristics has been developed for therapeutic aims.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.