Abstract

To achieve a high-throughput decoder, massive-parallel computations are normally applied to the Chien search, but the parallel realization increases the hardware complexity significantly. To reduce the hardware complexity of the parallel Chien search, this brief proposes a 2-D optimization method. In contrast to the previous 1-D optimizations, the proposed method maximizes the sharing of common subexpressions in both the row and column directions. All the partial products needed in the parallel structure are represented in a single matrix, and the finite-field adders are completely eliminated in effect. Simulation results show that the proposed 2-D optimization leads to a significant reduction of the hardware complexity. For the (8191, 7684, 39) BCH code, the count of xor gates in the parallel Chien search is reduced by 92% and 22%, compared to the straightforward and strength-reduced structures, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.