Abstract

TiN films were deposited onto various substrates including InP by rf sputtering in an N2/Ar ambient at room temperature. The rf power, the ratio of gas flows, and the total pressure were systematically varied. To optimize the deposition conditions, the plasma excitation processes were examined by optical emission spectroscopy using a calibrated crystal thickness monitor to determine the corresponding deposition rates. At pressures below 15×10−3 mbar, the deposition rate is linearly proportional to the intensity of the optical emission at 364.2 nm, I(Ti), associated with excited Ti. Although I(Ti) increases with the total pressure, at a given rf power, the resulting deposition rate decreases at pressures above 20×10−3 mbar due to greater gas-phase scattering. The [N]/[Ti] ratio in the deposited films, as determined by Rutherford backscattering and Auger electron spectroscopy, is found to be linearly correlated with the ratio of the optical emission intensities of excited N+2(391.4 nm) and Ti at 364.2 nm, I(N+2)/I(Ti).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.