Abstract

Plasma cathodic cage technique was developed recently in order to eliminate phenomena such as edge effects and overheating, which occur during conventional nitriding processes. In this work, the effect of plasma active species and cage configurations during thin film deposition of TiN were studied. This compound was chosen because its properties are very sensitive to slight variations in chemical composition and film thickness, becoming a good monitoring tool in fabrication process control. In order to verify the effect of cage geometry on the discharge and characteristics of the grown film, a cage made of titanium was used with different numbers and distribution of holes. Furthermore, different amounts of hydrogen were added to the Ar + N2 plasma atmosphere. Flow rates of Ar and N2 gas were fixed at 4 and 3 sccm, respectively and flow rates of H2 gas was 0, 1 and 2 sccm. Plasma species, electrical discharge and physical characteristics of the grown film were analyzed by Optical Emission Spectroscopy (OES), Atomic Force Microscopy (AFM), X-Ray Diffraction. It was observed by OES that the luminous intensity associated to Hα species is not proportional to flow rate of H2 gas. Electrical efficiency of the system, crystal structure and topography of the TiN film are strongly influenced by this behavior. For constant flow rate of H2 gas, it was found that with more holes at the top of the cage, deposition rate, crystallinity and roughness are higher, if compared to cages with a small number of holes at the top of cage. On the other hand, the opposite behavior was observed when more holes were located at the sidewall of cage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.