Abstract
This paper investigates the effectiveness of four Huffman-based compression schemes for different intracortical neural signals and sample resolutions. The motivation is to find effective lossless, low-complexity data compression schemes for Wireless Intracortical Brain-Machine Interfaces (WI-BMI). The considered schemes include pre-trained Lone 1st and 2nd order encoding [1], pre-trained Delta encoding, and pre-trained Linear Neural Network Time (LNNT) encoding [2]. Maximum codeword-length limited versions are also considered to protect against overfit to training data. The considered signals are the Extracellular Action Potential signal, the Entire Spiking Activity signal, and the Local Field Potential signal. Sample resolutions of 5 to 13 bits are considered. The result show that overfit-protection dramatically improves compression, especially at higher sample resolutions. Across signals, 2nd order encoding generally performed best at lower sample resolutions, and 1st order, Delta and LNNT encoding performed best at higher sample resolutions. The proposed methods should generalise to other remote sensing applications where the distribution of the sensed data can be estimated a priori.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.