Abstract
This paper presents the results of our recent work on studying the effects of deep brain stimulation (DBS) and medication on the dynamics of brain local field potential (LFP) signals used for behavior analysis of patients with Parkinson's disease (PD). DBS is a technique used to alleviate the severe symptoms of PD when pharmacotherapy is not very effective. Behavior recognition from the LFP signals recorded from the subthalamic nucleus (STN) has application in developing closed-loop DBS systems, where the stimulation pulse is adaptively generated according to subjects' performing behavior. Most of the existing studies on behavior recognition that use STN-LFPs are based on the DBS being "off". This paper discovers how the performance and accuracy of automated behavior recognition from the LFP signals are affected under different paradigms of stimulation on/off. We first study the notion of beta power suppression in LFP signals under different scenarios (stimulation on/off and medication on/off). Afterward, we explore the accuracy of support vector machines in predicting human actions ("button press" and "reach") using the spectrogram of STN-LFP signals. Our experiments on the recorded LFP signals of three subjects confirm that the beta power is suppressed significantly when the patients take medication (p-value < 0.002) or stimulation (p-value < 0.0003). The results also show that we can classify different behaviors with a reasonable accuracy of 85% even when the high-amplitude stimulation is applied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.