Abstract

Deep carbon mitigation and water resources conservation are two interacted environmental challenges that China's power sector is facing. We investigate long-term transition pathways (2020–2050) of China's power sector under carbon neutrality target and water withdrawal constraint using an integrated capacity expansion and dispatch model: SWITCH-China. We find that achieving carbon neutrality before 2060 under moderate cost decline of renewables by 10–20% depends heavily on large scale deployment of coal-fired power generation with carbon capture and storage (CCS) since 2035 in China's water-deficient northwestern regions, which may incur significant water penalties in arid catchments. Introducing water withdrawal constraints at the secondary river basin level can reduce the reliance on coal-CCS power generation to achieve carbon neutrality, promote the application of air-cooling technology, and reallocate newly built coal power capacities from northwestern regions to northeastern and southern regions. If levelized cost of renewables can decline rapidly by about 70%, demand for coal power generation with CCS will be significantly reduced by more than 80% and solar photovoltaic (PV) and wind could account for about 70% of the national total power generation by 2050. The transition pathway under low-cost renewables also creates water conservation co-benefits of around 10 billion m3 annually compared to the reference scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call