Abstract

Despite the great use of nanomaterials for engineering and medical applications, nanomaterials may have adverse consequences by accidental exposure, because of their nanoscale size, composition and shape. Like many nanomaterials, carbon nanotubes (CNTs) have been used for many proven applications, but the size of the CNTs makes them more readily become airborne and can therefore create the risk of being inhaled by a worker. In this study, we evaluated single-walled CNT (SWCNT)-induced effects on cellular responses such as cell proliferation, inflammatory response and oxidative stress in dynamic cell growth condition. A dynamic cell growth environment was established to mimic the dynamic changes in the amount of circumferential and longitudinal expansion and contraction occurred during normal breathing movement in the lung. Two different length (short: outer diameter (OD) 1-2 nm, length 0.5-2 μm; long: OD 1-2 nm, length 5-30 μm) of SWCNTs were used at different exposure concentrations (5, 10 and 20 μg/ml) during the different exposure duration (24, 48 and 72 h). Dynamic environment facilitated altered interaction between SWCNTs and A549 monolayer. Cellular responses in dynamic condition were significantly different from those in static condition. Moreover, cellular responses were dependent on the length of SWCNTs both in static and dynamic cell growth conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call